

FABRIC Asia

Use of jar tests

GIZ FABRIC – ETP Operator Course

Selection of chemicals

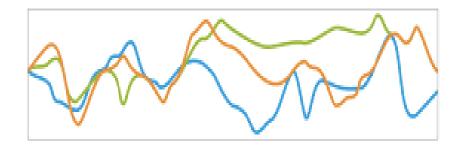
Contents

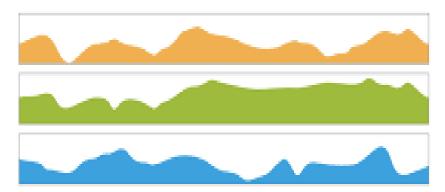
3

Before jar testing

- Keep solutions of different concentrations ready
- Need of dosing at same time

- Step 1: Select all coagulants for testing e.g. ferrous sulphate, alum, poly aluminum chloride (PAC), ferric chloride)
- Step 2: Keep two sets of jars ready
 - Set 1: Focus on color removal.
 - Set 2: Evaluating reduction of TSS, COD and BOD.

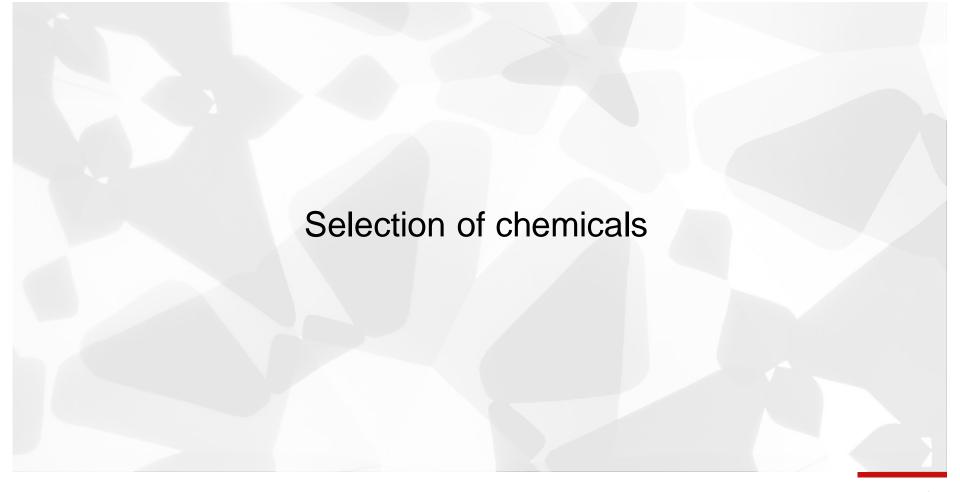



Jar test apparatus

- Step 3 Prepare chart for comparing efficiencies of different chemicals for two 2 sets
- **Step 4** Identify **optimum chem**ical and optimum dosage

Important

- Compare removal efficiency
- Ascertain **sludge generation**
- Determine possible treatment cost



For consideration!

- Reconsider need of coagulant if...
 - no major colour or
 - turbidity of effluent

Common poor practices

Avoid adding chemicals in primary treatment without

- understanding function of chemicals
- distinguishing between coagulants and flocculants

Example

Usage of coagulants if high level of colloidal solids in raw effluent

Low amount of colloids

Selection of chemicals

Coagulants or flocculants

How to decide

If colloids high

evaluate different coagulants

If **colloids low** and colour of reactive dyes low

check different flocculants

High amount of colloids

Evaluating different coagulants

Colloid lows and color of reactive dyes not high, check different flocculants

Determining colloid level

- Step 1: Filter effluent through 20 microns filter paper (e.g. Whatman 4,) to remove general suspended solids.
- Step 2: Filter again through filter paper of <2 microns (e.g. Whatman 602h)
- Step 3: Weigh second filter paper to determine colloidal particles level

Lab analytical balance

Determining colloid level

Be aware

- Better results with filter paper <2
 µ but tests
 more difficult
- More accurate analysis by particle size distribution (PSD) analysis in external laboratory

Typical coagulants

- Ferrous sulphate
- Alum
- Poly aluminum chloride (PAC)
- Ferric chloride etc.

New

Pre-hydrolyzed inorganic coagulants based on aluminum and iron

Ferrous sulphate

- Widely used in colour removal in effluent with reactive dyes
- Not good for non-reactive dyes.
- Small overdose turning effluent reddish when exposed to air
 - eventual oxidation of ferrous sulphate to ferric salt

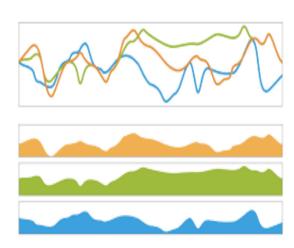
15

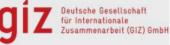
Flocculants

- Many polymer-based flocculants available, mostly with trade names
- Lime also flocculant indirectly aiding coagulation
 - coupled with other flocculants

Different stages of settling

How to select


- Check and compare efficiency of different chemicals through laboratory tests
- Check features of chemicals while selecting
- Select chemical
 - working in wide pH ranges
 - working in low dosage
 - producing less sludge
 - not significantly increasing TDS



How to select

- Tabulate efficiency of chemicals in simple chart.
- When combining chemicals (e.g. alum, lime, polyelectrolyte)
 - prepare chart with different dosage combinations keeping one chemical dose constant in each case.
- Select optimum dosage.
 - When dosing ferrous sulphate, dose till effluent just turning into pale green.

