PRE-FEASIBILITY STUDY

Evaluating renewable thermal energy options for textile and garments sectors in Bangladesh and Pakistan

Promotion for Sustainability in the Textile and Garment Industry in Asia-FABRIC

Webinar:

How fashion industries contribute to combating climate change? Biomass and Solar Water Heating to reduce GHG emissions

7 April 2022'

Muhammad SALMAN Butt

Espire Consult, Pakistan salman@espire.com.pk

The goal of the study is to identify potentials to reduce GHG emissions with focus on renewable energy resources in textile and garments sector

To conduct a pre-feasibility study on renewable energy market and identify alternative renewable sources for boilers or thermal application replacing fossil fuel in textile and garments sectors of Bangladesh and Pakistan

Phase – 1

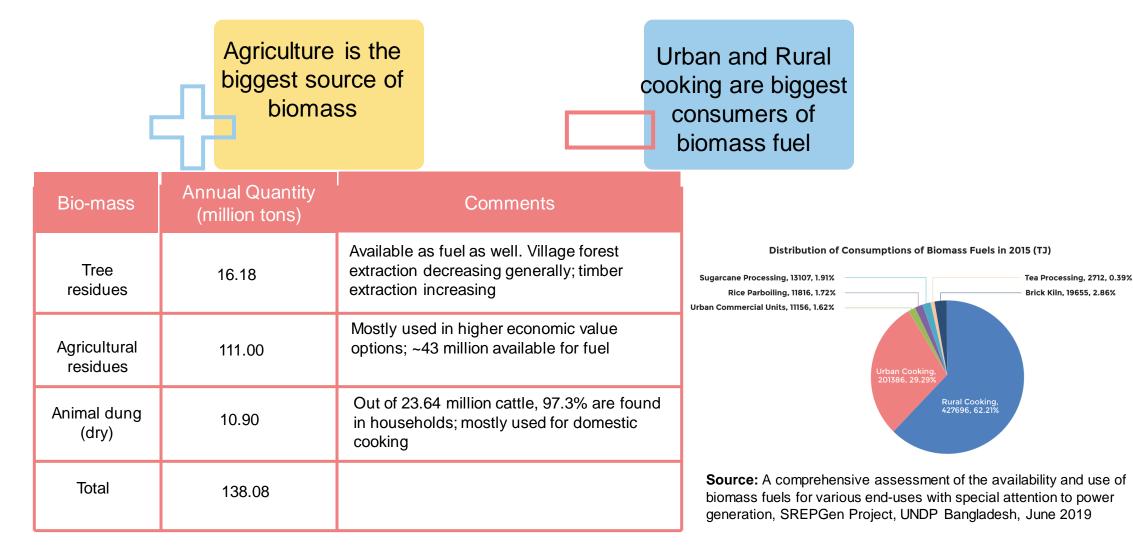
To conduct a detail study on the most relevant and suitable renewable energy source to use in the industry

Phase -2

Areas of Thermal Energy Demand in Textile And Garment Factories

Woven & Knitted Fabric Processing (Non-denim)	Water	Steam
Fabric Bleaching	\checkmark	\checkmark
Fabric Washing	\checkmark	\checkmark
Fabric Dyeing and Printing (Reactive)	\checkmark	\checkmark
Fabric Finishing	\checkmark	\checkmark
Denim Fabric Processing		
Denim Rope Dyeing	\checkmark	\checkmark
Denim Fabric Processing	\checkmark	\checkmark
Denim Fabric Finishing (Sizing, Mercerizing etc.)	\checkmark	\checkmark
Denim Garment Process		
Denim Garment Dyeing	\checkmark	\checkmark
Garment Washing	\checkmark	\checkmark
Laundry Drying		\checkmark
Garment Finishing	\checkmark	\checkmark
Knitted Garment Process		
Garment Finishing (pressing)		\checkmark

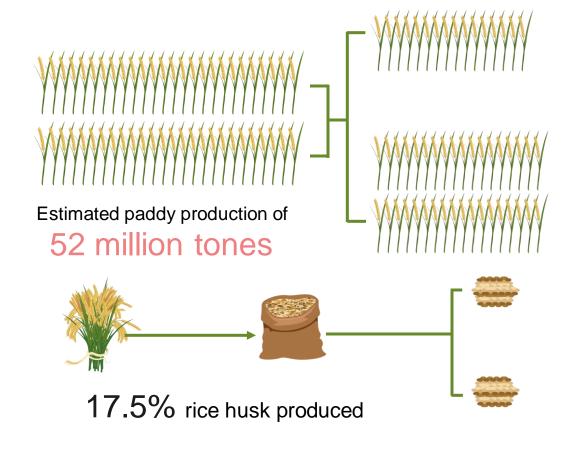
Renewable Energy Options Evaluated



Biomass for Steam Generation (Combustion and Gasification)

Solar Water Heating

BIO-MASS FOR STEAM GENERATION


Bio-mass Availability and Use in Bangladesh

Rice Husk Availability in Bangladesh

Very limited quantity of rice husk is available as fuel to industrial sector

Fluctuating supply and price result in higher cost of steam production compared to most commonly available fuel (Natural Gas)

are kept by farmers for their own consumption mostly for cooking as fuel including the related agricultural waste and rice husk

70% (36.4 million tonne) are processed in rice mills

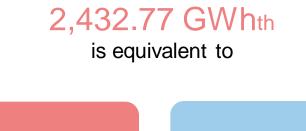
50% of husk is used by traditional mills to run their boilers

rest 50% are sold to poultry farms and wood stick manufacturers who produce these sticks from husk which are ultimately used for domestic cooking

Source: Bangladesh Auto Major and Husking Mill Owners Association (2021)

Current Trends in Bangladesh

Bio-mass	Price
Rice Husk	8 – 12 USD-cents/kg (7-10 BDT/kg)
Saw Dust	2.3 – 14 USD-cents/kg (2-12 BDT/kg; Average 5 BDT/kg)
Wood logs / chips	4.5 – 5.7 USD-cents/kg (4-5BDT/kg)
Other bio-mass	No reliable price data available


Current Trends in Bangladesh

	Lowest cost option for steam generation	
Tendency to shift from bio-mass to natural gas as soon as a gas connection is awarded	Capacity utilization of co-generation systems with Gas fired engines	
	Fluctuation in supply and prices of bio-mass	
	Storage requirements due to high moisture in bio-mass	
Continuing users	Companies having access to cheap bio-mass (located near the sources)	
	Using bio-mass boilers as back-up option in case of low natural gas pressure	

Bio-mass Availability from Various Sources in Pakistan

Bio-mass	Bio-mass available for energy generation (Million Tonne / Year)	NCV (MJ/kg)	Energy generation potential (GWhth/year)
Sugar Cane Trash	2.0	12.6	555.55
Rice Straw	2.23	12.5	619.44
Rice Husk	0.44	13.5	122.22
Cotton Stalk	2.67	15.0	741.66
Maize Cob	0.26	14.0	72.22
Maize Husk	0.173	11.6	48.05
Maize Stalk	0.985	13.0	273.61
Bagasse	Negligible	7.5	0.00
Wheat Straw	Not Considered	14.4	0.00
Sub-total	8.758		2,432.77

Estimated using updated crop data and Residue to Crop Ratio identified by World Bank Report in 2016.

or

73 MW power generation

361.2 TPH Steam generation

Not very significant considering the collection and supply chain challenges of biomass, and demand of textile and garment industry

Current Trends in Pakistan

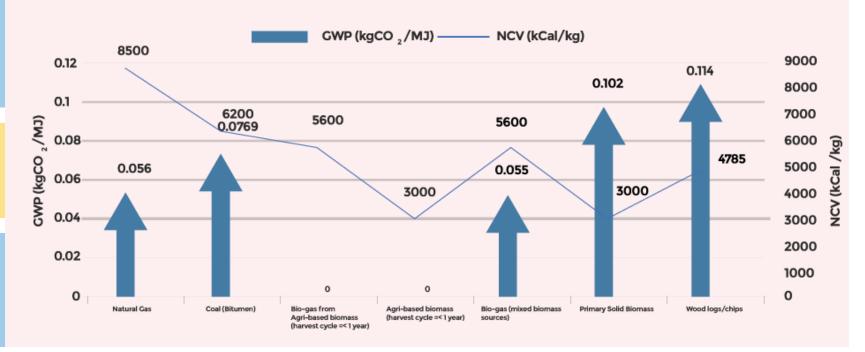
Bio-mass	Price
Rice Husk	5.5 – 8.0 USD-cents/kg (9-13 PKR/kg)
Maize Cob	5.5 – 8.0 USD-cents/kg (9-13 PKR/kg)
Other bio-mass	No reliable price data available

Current Trends in Pakistan

Rapid conversion to Rice husk was not supported by supply chain so price fluctuations were unprecedented Low availability of biomass due to seasonal affects

Very low calorific value and high moisture content compared to coal and other fuels

Gas fired boilers converted by adding poorly designed refractory furnaces for biomass burning resulting in low efficiency and high maintenance cost

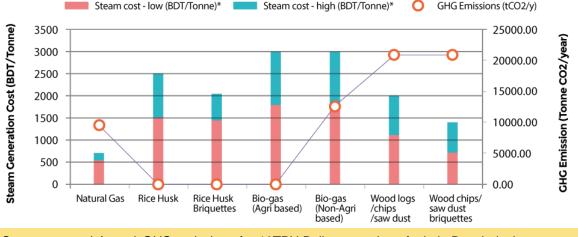

Heavy investments needed for pollution control (especially Particulate Matter) Post combustion issues: Ash equivalent to ~30% of fuel is generated. This ash was welcomed by farmers initially but then farmers slowly declined as it suited less to their needs.

Global Warming Potential and Calorific Values of Available Fuels for Boilers

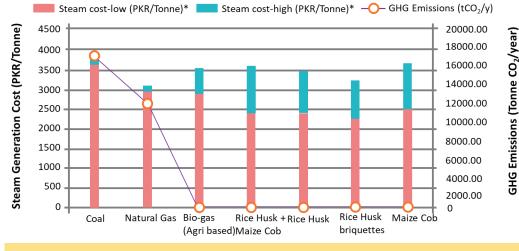
Agri-based bio-mass is considered to have Net-Zero Emissions as per IPCC 2019

General NCV of agri-based bio-mass is quite low compared to Natural Gas and other alternatives

Bio-gas contains higher NCV but becomes even more expensive, and requires larger scales


Technology Options for Steam Boilers

(CONSIDERING 10TPH BOILER)


Fuel	Boiler technology	Investment (USD)	Investment for emission control equipment (USD)	Additional Space Required
Natural Gas	Fire tube	220,000	-	-
Rice Husk	Water tube Travelling Grate, Circulating Fluidized Bed	320,000 – 400,000	18,000 – 40,000	7,700 m ³
Rice Husk briquettes	Water tube Travelling Grate	Boiler 320,000 – 400,000 Briquetting machine ~5,000	18,000 – 40,000	9,000 m
Wood Logs / chips / saw dust / Maize Cob	Water tube Travelling Grate	320,000 – 400,000	18,000 – 40,000	7,700 m ³
Wood chip / saw dust briquettes	Water tube Travelling Grate	Boiler 320,000 – 400,000 Briquetting machine ~5,000	18,000 – 40,000	9,000 m for storage
Bio-gas (Agri- based or sewage waste bio-mass)	Bio-gasification + fire tube boiler	860,000 – 1,100,000	-	7,700 m ³ for storage 1,676 m ³ for gasifier

Technology Options for Steam Boilers

(CONSIDERING 10TPH BOILER)

Steam cost and Annual GHG emissions for 10TPH Boiler on various fuels in Bangladesh

Steam cost and Annual GHG emissions for 10TPH Boiler on various fuels in Pakistan

Rational for Switching to Agri-based Bio-mass

01

Bio-mass is expensive but has lesser net GHG Emissions making it suitable in terms of climate improvement targets

02

Briquetting reduces the steam generation cost significantly as it has better calorific value due to reduced and controlled moisture in the bio-mass

03

Suitable fuel mix may be selected by tradingoff between steam cost and GHG emissions

04

Latest trends of rapidly increasing Natural Gas and other fossil fuel prices in both countries as well as globally

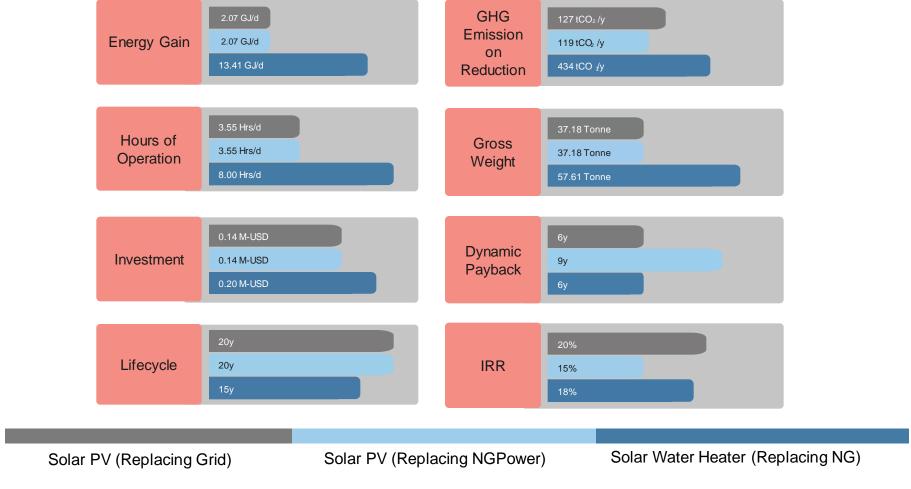
Limitations of Biomass Based Steam Generation System

- Natural gas combustion efficiency is easier to control compared to solid fuels like bio-mass
- Bio-mass fuels require extensive monitoring and manual control by operators; automation works only if bio-mass type is fixed, and quality is consistent
- Not all boilers can fire all types of bio-mass materials
- Moisture in bio-mass varies across the year which significantly effects boiler combustion efficiency
- Large storage space and high man-power required
- Bio-mass price fluctuations result in significant variation in steam generation cost
- Challenging to manage the supply chain for bio-mass
- Special arrangements required for

filtering out the pollutants from air and water

drying, handling and storing the ash

safe disposal of ash


Not enough bio-mass available to drive a major shift from fossil fuels to bio-mass for energy generation in both countries.

SOLAR THERMAL ENERGY

Solar Water Heaters are More Feasibility Compared to Solar PV – Bangladesh

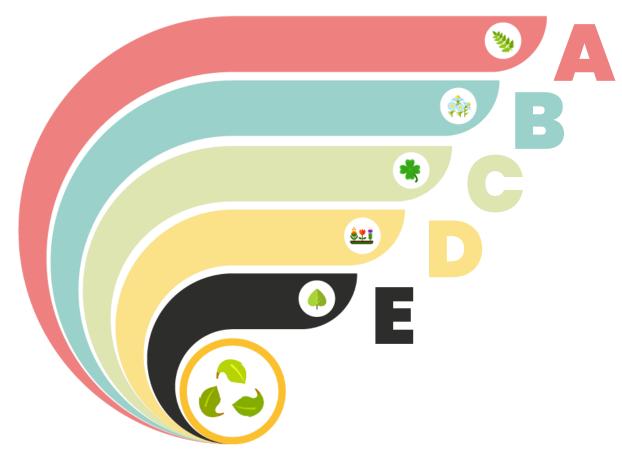
Comparison is made for similar rooftop area coverage by both systems

10 m³/hr Solar Water Heater Vs 203 kW-DC Solar PV

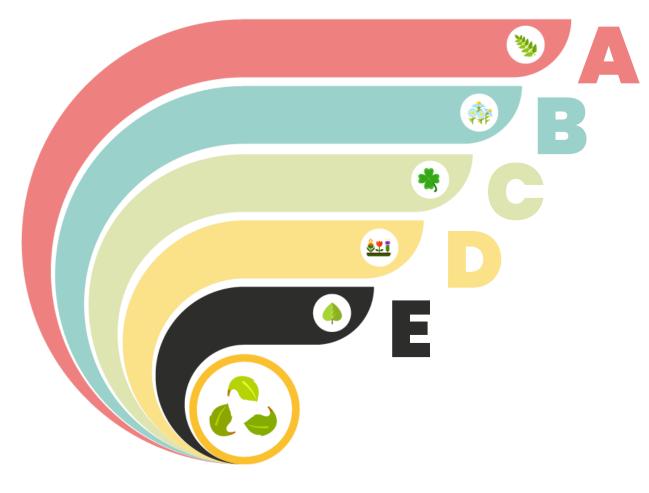
Solar Water Heaters Are More Feasiblity Compared To Solar Pv – Pakistan

Comparison is made for similar rooftop area coverage by both systems

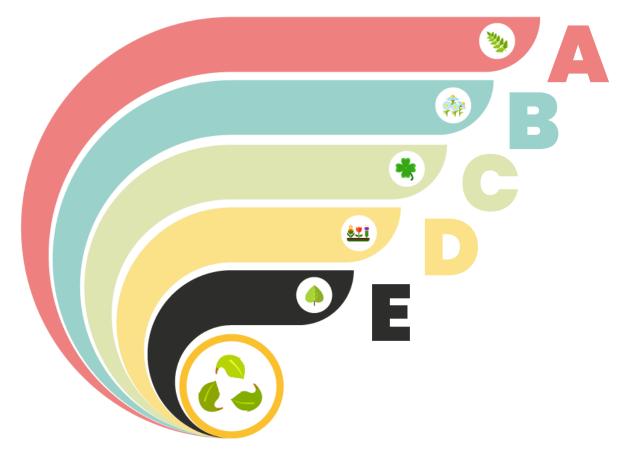
10 m³/hr Solar Water Heater Vs 203 kW-DC Solar PV



Companies prefer Solar PV due to ease of operation and lower operational and maintenance cost


Solar PV systems require much more investment for same amount of energy compared to solar water heater. Payback period for Solar PV replacing Natural Gas based power is even longer; hence the low IRR.

Companies prefer Solar PV due to ease of operation and lower operational and maintenance cost


It is much easier to install and operate solar PV system as they do not require allied utilities like pumps, heat exchangers and storage tanks.

Companies prefer Solar PV due to ease of operation and lower operational and maintenance cost

Specific weight of the Solar PV system is much lesser than that of solar water heaters reducing requirements for structural reinforcement.

Companies prefer Solar PV due to ease of operation and lower operational and maintenance cost

Potential to reduce GHG emissions is much higher for Solar Water Heater compared to Solar PV.

Companies prefer Solar PV due to ease of operation and lower operational and maintenance cost

Solar water heaters have shorter lifecycle compared to Solar PV and also have higher operations and maintenance costs.

Important Factors in Choosing Between Solar Energy Options

01>

Requirement of hot water in garment washing process is usually intermittent. However, careful planning and proper designing and insulation of water circuit may resolve this issue to some extent.

Industrial scale Solar Water Heaters may not be feasible for factories using steam only for garment pressing

Solar water heaters are highly suitable for factories having more stable hot water demand, such as fabric processing mills and large garment washing units.

Solar PV systems require much more investment for same amount of energy compared to solar water heaters. However, it presents considerably less challenges.

05>

GHG emission reduction for solar PV is considerable when replacing grid power, however, potential significantly reduces when replacing natural gas power.

Mapping Potential for Renewable Energy Sources

Renewable Energy Options	Energy Cost	GHG Emission	Nature and Direction of Regulation
Bio-mass	Increased steam cost compared to natural gas	No GHG emission accounted for agri- based bio-mass with harvest cycle equal or less than 1 year	No restriction
Solar Thermal	Financially feasible even when compared with Natural gas fired steam boilers	Significant reduction	Supportive
Solar PV	Financially feasible compared to grid; longer payback against natural gas-based power	Significant reduction	Supportive

Mapping Potential for Renewable Energy Sources

Renewable Energy OptionsGeographical in supply; Sup data only up-	variation Flu	Seasonality uctuating based on crop arvesting cycle	Key Vendors No formal data of bio- mass suppliers;	Pricing Considerations Basic price data	Current Uses Data only up-till 2015 for BGD.
Bio-mass in supply; Sup	ply chain	on crop		Basic price data	· ·
			technology suppliers available but not formally organized	available; concrete fluctuation data not available	Estimates made for 2019-20 for PAK based on data of 2015.
Solar Thermal Geographically irradiation p	•	Seasonally variable irradiation potential	Limited suppliers for industrial solutions, not formally organized	Generally established prices but variable based on currency exchange rate	No mapping available for industrial sector
Geographically Solar PV irradiation p	y variable	Seasonally variable irradiation potential	Bangladesh Solar and Renewable Energy Association; Bangladesh Solar Energy Society. Multiple vendors in Pakistan.	Generally established prices but variable based on currency exchange rate	No mapping available for industrial sector

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

