Trainers Training Program on Waste Management in Textile & Garment Industry in BGD

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC

GIZ FABRIC – Waste Management Course

Presentation 6: Dewatering of sludge from ETP

Contents

Objective of sludge dewatering

Sludge pre-conditioning

Mechanical sludge dewatering

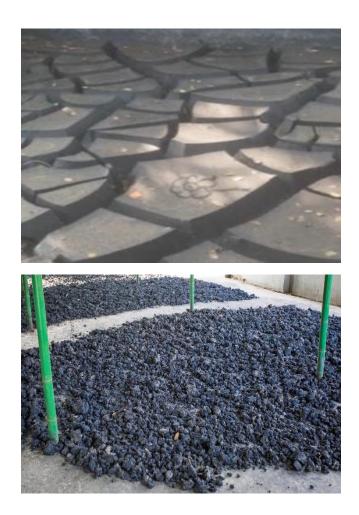
Sludge drying beds

Objective of sludge dewatering

- Sludge generated like watery slurry
 - Make fit for handling before discharge or disposal.
 - Still polluted & hence cannot be discharged anywhere.
- Reduce sludge moisture content by
 - Sludge thickening
 - Sludge **dewatering** to turn into **dry cake**

Sludge treatment and handling

Gravity thickener



Proprietary mechanical thickener

Sludge thickening

- Gravity thickening
 - Most common
 - Simple operation
 - Low operating cost
- Mechanical thickening
 - Costlier
 - It is 'Preliminary' mechanical dewatering

Overview of units and equipment

Common units in sludge management

- Sludge pumps and conditioning units
- Sludge thickeners
- Sludge volume reducing systems including digestors
- Sludge dewatering
- Sludge driers (thermal/natural)
- Sludge disposal/utilisation systems

37

Designed to handle high solids content (1-7%) Types of pumps

- Centrifugal pumps with open/semi open impellers
- Submersible pumps
 - For low solids content (e.g. thickener feed pump) and low pressure requirements
- Archimedean screw type pumps:
 - Designed to handle huge quantities
 - Not popular in small-medium ETPs
 - Not suitable for thick sludge

Types of pumps

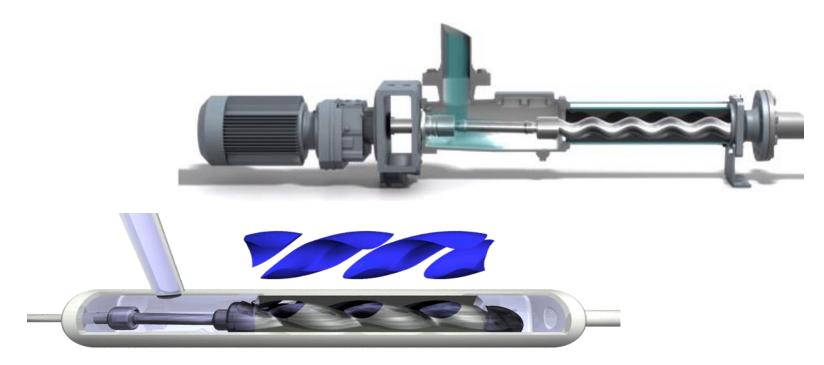
- Progressive cavity pumps or 'screw pumps'
 - Most common unit
- Air-operated diaphragm pumps:
 - Simple and comparatively cheaper
 - Need compressed air
 - Suitable for ETP with large pneumatic systems
- Rotary lobe pumps
 - Similar to air blowers used to pump thick sludge

Pumps for liquid sludge: Centrifugal

- Mainly for low density sludge from clarifier underflows and watery sludge settled in tanks
- Also for pumping thickened sludge (bio-sludge)
 - Good for high quantity pumping with moderate amount of sludge consistency (1 4%)
- With non-clog feature as open or semi open configuration
 - Open/semi open impellers reducing pumping rate
- Good for medium head (10 40 m, 1 4 bars)

Pumps for liquid sludge: Submersible

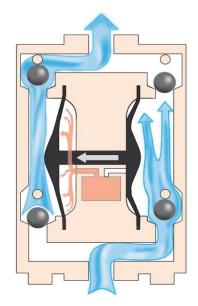
- Only for low density sludge such as in clarifier underflows and sludge settled in tanks
- Suitable for pumping thickened sludge for biosludge
 - Good for high quantity pumping with moderate amount of sludge consistency (1 4%)
- Equipped with cutter/grinder mechanism to prevent clogging
- Impellers made in stainless steel and pump casing in iron


- Pumps for liquid sludge: Submersible
- Mostly water cooled
 - Minimum level to avoid loss of storage volume
- Commonly installed in pumping chamber within sludge storage tank
- Not practical for small ETPs
 - 10 or 20 m3 capacity for sludge tank needed
- Water flushing arrangements to clear dried sludge blockages
- Good for medium head (10 40 m, 1 4 bars)
 - Clarifier underflow to thickener

Pumps for liquid sludge: Progressive cavity pumps

- Most common, also called screw or helical rotor pumps
- Rotor and stator creating moving chambers to with fluid draw into and coming out with force
- Rotor: Stainless steel, Stator: EPDM rubber.
- Used for filter press feeding (7 16 bar)
- Efficiency increasing with higher liquid thickness
- Output flow control by increasing or decreasing speed
- Motors controlled by Variable Frequency Drive (VFD)

Pumps for liquid sludge: Progressive cavity pumps

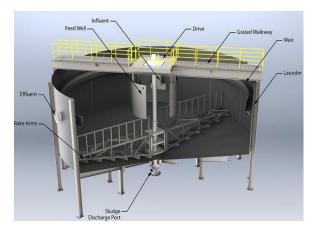


Pumps for liquid sludge: Air operated diaphragm pumps

- Positive displacement pump
 - Two pumping chambers alternately filled and discharged by flexible diaphragms movement
 - Compressed air filled and vented from two air chambers on opposite sides to create pumping action
- Diaphragm pumps leak-free with less maintenance and moving parts
 - General maintenance only for periodical replacement of diaphragms

Pumps for liquid sludge: Air operated diaphragm pumps

Pumps for liquid sludge: Air operated diaphragm pumps


- Suitable for handling abrasive and concentrated sludges
- No damage when running dry
- **Requiring compressed air** usually for lower pressure (up to 8 bar)
- Not suitable for filter presses for textile sludge (requiring 12 16 bar pessure)
- Noisy

Sludge thickening systems

Gravity thickener

- To concentrate solids (2 5 times more) and reduce sludge volume
- Depending on required capacity
 - hopper bottom
 - rectangular
 - circular in shape
 - Common and similar to clarifiers with picket fences added to scrappers
- Seldomly used in Bangladesh except few units with hopper bottom thickeners or rectangular tanks

Gravity thickener

- Loading rate (solids load per m2 of the tank):
 - Primary 100 kg/m2/day
 - Secondary 25 kg/m2/day
 - Combined ETP: 35 kg/m2/day
- Retention time: ≈ 1 day
- Clear overflow returned to equalization tank
 - Faulty operations resulting in thick sludge overflow (!)
- Effective with combined sludge, not effective with allbiological sludge

Dissolved air floatation (DAF) thickener

- Effective for wasted activated sludge
- Similar operation like dissolved air floatation in primary treatment:
 - (1) Sludge mixed with compressed air
 - (2) Thickened sludge rising to top
 - (3) Sludge scooped using scum scrapper
- Used for thickening secondary sludge (from 1% to 3%)
 - not for heavy primary sludges (!)



Dissolved air floatation (DAF) thickener

- **Conditioning chemicals** for enhancing thickening
 - Flocculants or polyelectrolytes (quite often)
- Loading rate for secondary sludge:
 - 50-120 kg/m2/day of surface without conditioning
 - 200-250 kg/m2/day of surface with conditioning
- Advantage
 - Low retention time
 - Sludge staying aerobic
 - Preventing putrefaction avoiding odor

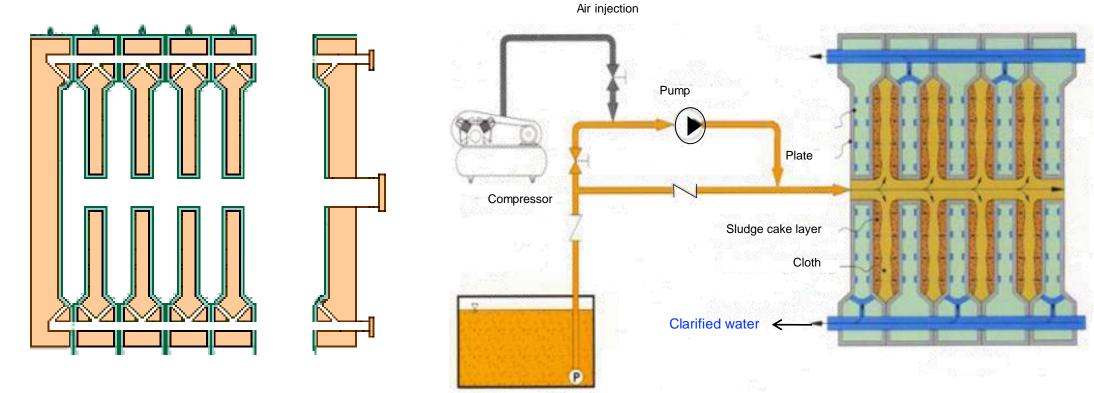
Mechanical thickening

- Uncommon Bangladesh
- Common systems
 - Gravity belt thickener with sludge passing perforated belt
 - Rotary drum thickener with sludge fed into to slowlyrotating vessel with porous walls
 - Screw thickener with central screw pressing sludge through rotating multi-disk filters
- Spray system required to clean perforated platforms and prevent pores blockage

Sludge dewatering systems

Chamber filter press

- Most popular mechanical sludge dewatering unit for small and medium ETPs
- Simple, sturdy and reliable
- Filter plates used as cavities (recessed chambers)



Chamber filter press

Operation – filtration cycle

- Press with filter plates closed by hydraulic locking cylinder
- Chamber formed between individual filter plates with sludge pumped in under high pressure
- Cake forming by increasing thickness of sludge
- Plates opening and caking fall out
- Filtrate flowing through cloth and discharged through filtrate channel

Chamber filter press

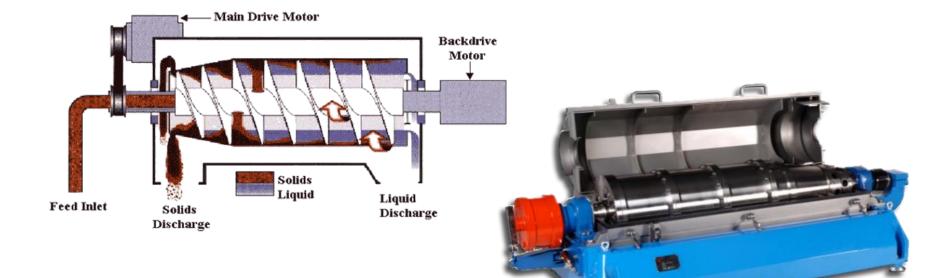
Sludge tank

Chamber filter press

- Optional features
 - Provision for air/steam passing through centre for drier sludge
 - Cake collector in trailer or container
- Advantage
 - High level of dryness (moisture reduction by 60-65%)
- Disadvantage
 - Higher capital cost
 - Higher area requirement
- Conditioning using Ferric chloride/lime

Sludge centrifuge

- Decanter centrifuges most popular in large ETPs
 - Models with vertical and specially horizontal mount
 - Cylindrical bowl rotating at 4000 6000 rpm
- Concept:
 - Heavier particles separated faster when rotating at high speeds
 - Slow moving screw conveyor within bowl to transport separated solids to collection bin

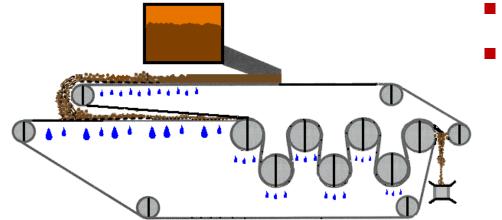


Sludge centrifuge

- Advantages:
 - no odor problem
 - very small area requirement
 - minimum labor requirement
- Disadvantages:
 - high noise level during operation
 - high power consumption
 - need for conditioning with polyelectrolyte
 - high moisture content in dewatered sludge (75%)

Sludge centrifuge

Belt filter press


- Popular for medium and large ETPs
- Concept:
 - Two moving belts with sludge admitted between theses
 - Sludge moving between series of rollers and squeeze
 - Water released and drained by gravity
 - Squeezed and dewatered sludge getting scraped by stationary blade

Belt filter press

Important features

- Jet spray to wash cloth
- Arrangement to keep alignment of belts
- Differential speed motors to adjust the

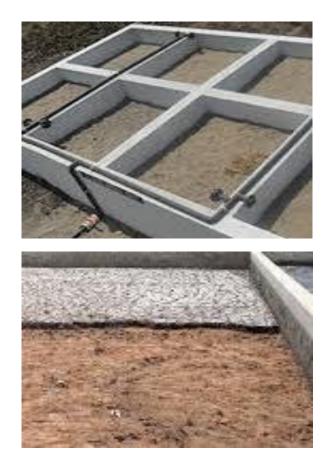
speed

Belt filter press

- Advantages:
 - less pressure pumps required
 - very little noise emission
 - easy to monitor since open

Disadvantages:

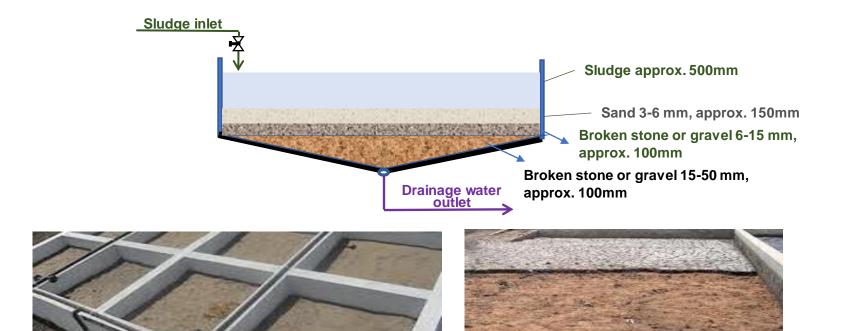
- odor problems
- issues with belt alignment
- lower dryness of sludge (25 30%)
- need for polyelectrolyte conditioning (operating cost!)


Sludge drying beds

- Masonry units with no mechanical arrangements
- Suitable for small ETPs if space available
- Set-up:
 - Series of shallow tanks with sloped floor towards center
 - Perforated pipe to collect and drained water
 - Topped with gravel/sand media of different sizes (with finer sand on top)

Sludge drying beds

- Process
 - Liquid sludge pumped in and spread on open bed of sand
 - Allowed to remain until dry
 - Drying through evaporation and gravity drainage
 - 1 week of drying => solids content 35-40%
 - Drained water pumped back to ETP


Sludge drying beds

- Advantages
 - Simple construction
 - low maintenance
 - comparatively lowest drying costs
 - emergency standby unit during any breakdown of

mechanical dewatering equipment

- Disadvantages:
 - high land requirement
 - potential for odor
 - high manual labor requirement

Sludge drying beds

	Decanter	Belt press	Chamber filter press	Sludge drying beds
Way of operation	Continuous	Continuous	Batch	Batch
Sludge dryness	Low	Medium	High	High
Sludge conditioning	required	required	not required	Not required
Washing water	not required	required	not required	Not required
Labor	only supervision	only supervision	required during cake discharge	Required
Sensitive to sludge variability	very sensitive	very sensitive	less sensitive	Less sensitive
Energy required (electricity)	high	medium	low	NA
Maintenance	sophisticated	medium	low	low

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

